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Cancellation of infrared divergences at NNLO
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Abstract. Perturbative calculations at next-to-next-to-leading order for multi-particle final states require
a method to cancel infrared singularities. I discuss how to setup the subtraction method at NNLO.

PACS. 12.38.Bx Perturbative calculations

1 Introduction

The next generation of collider experiments will hunt for
the Higgs and other yet-to-be-discovered particles with
increased luminosity and experimental precision. The in-
creased experimental precision has to be matched by an
improvement in the accuracy of theoretical predictions.
Theoretical predictions are calculated as a power expan-
sion in the coupling. Higher precision is reached by inclu-
ding the next higher term in the perturbative expansion.
The experimental needs are numerical programs which
yield predictions for a wide range of observables. Urgently
needed are therefore fully differential next-to-next-to-lead-
ing order (NNLO) programs. Compared to certain speci-
fic NNLO predictions for inclusive observables, these pro-
grams are flexible and allow to take into account com-
plicated detector geometries and jet definitions. The only
requirement on the observable is infrared-safety. At NNLO
this implies that whenever a n + 1 parton configuration
p1, ..., pn+1 becomes kinematically degenerate with a n
parton configuration p′

1, ..., p′
n we must have

On+1(p1, ..., pn+1) → On(p′
1, ..., p

′
n).

In addition, we must have in the double unresolved case
(e.g. when a n + 2 parton configuration p1, ..., pn+2 beco-
mes kinematically degenerate with a n parton configura-
tion p′

1, ..., p′
n)

On+2(p1, ..., pn+2) → On(p′
1, ..., p

′
n).

To construct such NNLO programs the following ingre-
dients are needed:
(1) The scattering amplitudes. This implies in particular
for a NNLO program the calculation of the relevant two-
loop amplitudes. There has been substantial progress in
this field in the past years. The state-of-the-art is that all
two-loop-amplitudes, which are needed most urgently, are
now known [1,2,3].
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(2) A NNLO program requires a method to cancel infrared
divergences. Loop amplitudes, calculated in dimensional
regularization, have explicit poles in the dimensional re-
gularization parameter ε = 2−D/2, arising from infrared
singularities. These poles cancel with similar poles arising
from amplitudes with additional partons, when integra-
ted over phase space regions where two (or more) partons
become “close” to each other. However, the cancellation
occurs only after the integration over the unresolved phase
space has been performed and prevents thus a naive Monte
Carlo approach for a fully exclusive calculation. It is the-
refore necessary to cancel first analytically all infrared di-
vergences and to use Monte Carlo methods only after this
step has been performed.
(3) The final numerical computer program, which evalua-
tes the remaining phase space integrals, requires stable
and efficient Monte Carlo methods for this integration.

In this talk I focus on the cancellation of infrared diver-
gences [4]. In the next section I review general methods
at NLO. In Sect. 3 I discuss the subtraction method at
NNLO. Section 4 is devoted to one-loop amplitudes with
one unresolved parton.

2 A review of the subtraction method at NLO

Infrared divergences occur already at next-to-leading or-
der. As a simple example two diagrams contributing to
the NLO corrections to e+e− → 2 jets are shown in Fig. 1.
The diagrams are divided into virtual and real corrections.
The virtual corrections contain the loop integrals and can
have, in addition to ultraviolet divergences, infrared diver-
gences. For one-loop amplitudes the IR divergences mani-
fest themselves as explicit poles in ε up to 1/ε2. For each
IR divergence in the virtual corrections there is a cor-
responding divergence with the opposite sign in the real
emission amplitude, obtained from the integration over
the phase space region where some particles become soft
or collinear (e.g. unresolved). In general, the Kinoshita-
Lee-Nauenberg theorem guarantees that any infrared-safe
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Fig. 1. Cancellation of divergences between virtual and real
corrections at NLO

observable, when summed over all states degenerate ac-
cording to some resolution criteria, will be finite. However,
the two contributions (virtual and real) live on different
phase spaces and prevent a naive Monte Carlo approach.
At NLO, general methods to circumvent this problem are
known. This is possible due to the universality of the sin-
gular behaviour of the amplitudes in soft and collinear
limits. Examples are the phase-space slicing method [5]
and the subtraction method [6]. I briefly review the sub-
traction method here. The NLO cross section is given as
the sum of the virtual and real corrections:

σNLO =
∫

n+1

dσR +
∫

n

dσV .

If one can find an approximation term dσA such that dσA

has the same point-wise singular behaviour in D dimen-
sions as dσR itself, and such that dσA can be integrated
analytically in D dimensions over the one-parton subspace
leading to soft and collinear divergences, then one can add
and subtract this term as follows:

σNLO =
∫

n+1

(
dσR − dσA

)
+

∫

n


dσV +

∫

1

dσA


 .

Since by definition dσA has the same singular behaviour
as dσR, dσA acts as a local counter-term and the com-
bination (dσR − dσA) is integrable and can be evaluated
numerically. Secondly, the analytic integration of dσA over
the one-parton subspace will yield the explicit poles in ε
needed to cancel the corresponding poles in dσV .

3 The subtraction method at NNLO

The following terms contribute at NNLO:

dσ
(0)
n+2 =

(
A(0)∗

n+2A(0)
n+2

)
dφn+2,

dσ
(1)
n+1 =

(
A(0)∗

n+1A(1)
n+1 + A(1)∗

n+1A(0)
n+1

)
dφn+1,

dσ(2)
n =

(
A(0)∗

n A(2)
n + A(2)∗

n A(0)
n + A(1)∗

n A(1)
n

)
dφn,

where A(l)
n denotes an amplitude with n external partons

and l loops. dφn is the phase space measure for n partons.
Taken separately, each of these contributions is divergent.
Only the sum of all contributions is finite. To render the
individual contributions finite, one adds and subtracts sui-
table pieces:

Fig. 2. Diagrams contributing to different primitive amplitu-
des

〈O〉NNLO
n =∫ (

On+2 dσ
(0)
n+2 − On+1 ◦ dα

(0,1)
n+1 − On ◦ dα(0,2)

n

)

+
∫ (

On+1 dσ
(1)
n+1 + On+1 ◦ dα

(0,1)
n+1 − On ◦ dα(1,1)

n

)

+
∫ (

On dσ(2)
n + On ◦ dα(0,2)

n + On ◦ dα(1,1)
n

)
.

Here dα
(0,1)
n+1 is a subtraction term for single unresolved

configurations of Born amplitudes. This term is already
known from NLO calculations. The term dα

(0,2)
n is a sub-

traction term for double unresolved configurations. Fi-
nally, dα

(1,1)
n is a subtraction term for single unresolved

configurations involving one-loop amplitudes.
To construct these terms the universal factorization

properties of QCD amplitudes in unresolved limits are es-
sential [7]. QCD amplitudes factorize if they are decom-
posed into primitive amplitudes. Primitive amplitudes are
defined by a fixed cyclic ordering of the QCD partons, a
definite routing of the external fermion lines through the
diagram and the particle content circulating in the loop.
Figure 2 shows three one-loop diagrams for e+e− → 3 jets
contributing to different primitive amplitudes. One-loop
amplitudes factorize in single unresolved limits as

A(1)
n = Sing(0,1) · A

(1)
n−1 + Sing(1,1) · A

(0)
n−1. (1)

Tree amplitudes factorize in the double unresolved limits
as

A(0)
n = Sing(0,2) · A

(0)
n−2.

To discuss the term dα
(0,2)
n let us consider as an example

the Born leading-colour contributions to e+e− → qggq̄,
which contribute to the NNLO corrections to e+e− →
2 jets. The subtraction term has to match all double and
single unresolved configurations. The double unresolved
configurations are: (1) Two pairs of separately collinear
particles, (2) three particles collinear, (3) two particles
collinear and a third soft particle, (4) two soft particles, (5)
coplanar degeneracy. The single unresolved configurations
are: (6) Two collinear particles, (7) one soft particle. It
is convenient to construct dα

(0,2)
n as a sum over several

pieces,

dα(0,2)
n =

∑
topologies T

D(0,2)
n (T ).

Each piece is labelled by a splitting topology. An example
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Fig. 3. Splitting topology

is shown in Fig. 3. The term D(0,2)
n (T ) corresponding to

the topology shown in Fig. 3 approximates singularities in
1/s12, 1/(s12s123) and part of the singularities in 1/s2

123.
Care has to be taken to disentangle correctly overlapping
singularities like 1/(s12s23). Details can be found in [4].

4 One-loop amplitudes with one unresolved
parton

Apart from dα
(0,2)
n also the term dα

(1,1)
n , which approxi-

mates one-loop amplitudes with one unresolved parton,
is needed at NNLO. If we recall the factorization formula
(1), this requires as a new feature the approximation of the
one-loop singular function Sing(1,1). The corresponding
subtraction term is proportional to the one-loop 1 → 2
splitting function P(1,1)

(1,0) a→bc. An example is the leading-
colour part for the splitting q → qg:

P(1,1)
(1,0) q→qg,lc,corr = −11

6ε
P(0,1)

q→qg, +S−1
ε cΓ

(−sijk

µ2

)−ε

y−ε

{
g1,corr(y, z) P(0,1)

q→qg +
2f2

ysijk
p/e [1 − ρε(1 − y)(1 − z)]

}
.

This term depends on the correlations among the remai-
ning hard partons. If only two hard partons are correlated,
g1 is given by

g1,intr(y, z) = − 1
ε2

[
Γ (1 + ε)Γ (1 − ε)

(
z

1 − z

)ε

+ 1

−(1 − y)εzε
2F1 (ε, ε, 1 + ε; (1 − y)(1 − z))] .

For the integration of the subtraction terms over the un-
resolved phase space all occuring integrals are reduced to
standard integrals of the form

1∫

0

dy ya(1 − y)1+c+d

1∫

0

dz zc(1 − z)d [1 − z(1 − y)]e

2F1 (ε, ε; 1 + ε; (1 − y)z) =
Γ (1 + a)Γ (1 + d)Γ (2 + a + d + e)Γ (1 + ε)

Γ (2 + a + d)Γ (ε)Γ (ε)
∞∑

j=0

Γ (j + ε)Γ (j + ε)Γ (j + 1 + c)
Γ (j + 1)Γ (j + 1 + ε)Γ (j + 3 + a + c + d + e)

.

The result is proportional to a hyper-geometric functions
4F3 with unit argument and can be expanded into a Lau-
rent series in ε with the techniques of [8]. The results are
found in [4].

5 Outlook

In this talk I reported on the subtraction method to can-
cel infrared divergences at NNLO. The set-up involves two
new types of subtraction terms, dα

(0,2)
n and dα

(1,1)
n . The

former approximates double unresolved configurations of
tree amplitudes with n + 2 partons, whereas the latter
approximates one-loop amplitudes in single unresolved li-
mits. Decomposing the QCD amplitudes into partial and
primitive amplitudes, the appropriate subtraction terms
have been constructed. Furthermore, the analytic integra-
tion over the unresolved phase space has been performed
for all terms contributing to dα

(1,1)
n . Once the correspon-

ding analytic integration has been done for dα
(0,2)
n the

subtraction method at NNLO is complete and can used
for fully differential programs at NNLO.
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